The New Defenders

An explosion of federal funding has Bay Area researchers at the forefront of America's counter-terrorism program. Will the money make us safer - or just make science a military secret?

"[On the other hand,] we can't put students on projects where there is a restriction on this, because this is their career. This is their ability to begin to become full-fledged scientists. This is an important piece of their training. We have to be careful about that."

Thanks to new security concerns created in part by the anthrax mailings that paralyzed Congress and much of the nation's postal system last year, tomorrow's bio-laboratories will also look different than they have in the past, says Mark Wheelis, a senior lecturer at the University of California at Davis and an expert in the history of biological weapons. Once freely accessible public university laboratories will be entered through locked doors. There will be logs -- some recorded in a central government database -- documenting who had access to which pathogens at what time of which day and what happened to each sample on the bench. There may be cameras recording every move in the laboratory and possibly "buddy systems," in which no one investigator is ever allowed to work alone with samples of particular materials.

Clearly, new security concerns are enough to give some scientists pause. Whether these concerns are enough to keep scientists and potential scientists from working on sensitive material remains to be seen. Security measures that push scientists away from the counterterrorism field would have serious implications for public safety.

"The open science community in general, and in particular the university science community, is driving exactly those pieces of science and technology that perhaps not for tomorrow, but for the day after tomorrow, are the most vital keys to assuring that when attacks happen, we are able to mitigate the consequences," says Barletta. "I believe that is what science and biotechnology and infomatics and information technology and the several physical science areas hold promise for."

For more than three decades, government scientists in a little-known, unremarkable laboratory building in Maryland called the Unites States Army Medical Research Institute of Infectious Disease (AMRIID) have been picking apart the roots of deadly illnesses that might become biological weapons. And then someone from somewhere mailed finely powdered, or "weaponized," anthrax to a Senate office building.

Within days, people who usually spend their time peering through a microscope found themselves underneath one. Virtually every scientist in the country who had ever worked with anthrax -- most of them investigating vaccinations against or treatment of the disease -- became a suspect in the criminal investigation of the terror attacks.

AMRIID scientists, in particular, had their otherwise fairly normal lives pulled apart. Even the military colonel who heads the lab was investigated. Another scientist, Steven Hatfill, remains a prime target for federal agents, who have combed through every part of his professional and personal life. Hatfill, an expert in the lethal effects of anthrax, worked at AMRIID in the late 1990s; more recently, he was a government contractor who trained people, including members of the U.S. Special Forces, in the methods of responding to a biological weapons attack.

Of course, it is absolutely the FBI's job to capture criminals. But the hunt through the nation's laboratories for an anthrax madman was enough to scare the pants off the bright minds needed to develop vaccines against such infectious agents. And that hunt has made researchers uneasy, to say the least, about a new term in the national security vernacular -- a "person of interest," who, in the public mind, becomes a "potential suspect."

"One of the things we're currently seeing is increasing attention to physical security and personnel screening," notes Wheelis, the biological weapons expert at UC Davis. "It's the kind of thing that would affect people from moving into a new area."

Similarly, increased background screening of scientists to determine who can and cannot work on newly government-funded, high-priority research would risk the disqualification of academic scientists vital to such research.

"Our national security apparatus cannot expect the open science community, the university community, to compromise exactly that environment that makes science and technology so fruitful," says Lawrence Berkeley's Barletta. As example, he adds: "If I look at the program in my division, which is developing the next generation of electronics, and I look at the students, they are from all over the world, many of whom are from sensitive countries. If we were to say that many of them were [not able to work on this for security reasons], we would cripple that very research that we need for security."

From his laboratory in the maze that is San Francisco General Hospital, Jim Marks has had a front-row seat at the government's wrestling match with countering bioterrorism. Eight years ago, he received funding from the Department of Defense to work in collaboration with AMRIID scientists on combating botulism, a Class A biological agent that is, like anthrax, considered prone to weaponization.

In July, Marks' group published the results of its discovery of a drug that can be mass-produced for the prevention and cure of botulism. The long journey toward this important milestone in biological research had an interesting evolution. The project began when the U.S. military started to take the idea of biological weapons research seriously, a few years after the Gulf War ended. The work culminated as Marks watched his colleagues at AMRIID go through the hell of federal investigations surrounding the anthrax mailings.

« Previous Page
Next Page »
My Voice Nation Help
©2014 SF Weekly, LP, All rights reserved.